Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Theriogenology ; 219: 167-179, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38437767

Porcine seminal plasma (SP) is loaded with a heterogeneous population of extracellular vesicles (sEVs) that modulate several reproductive-related processes. This study investigated the effect of two sEV subsets, small (S-sEVs) and large (L-sEVs), on porcine in vitro fertilization (IVF). The sEVs were isolated from nine SP pools (five ejaculates/pool) using a size-exclusion chromatography-based procedure and characterized for quantity (total protein), morphology (cryogenic electron microscopy), size distribution (dynamic light scattering), purity and EV-protein markers (flow cytometry; albumin, CD81, HSP90ß). The characterization confirmed the existence of two subsets of high purity (low albumin content) sEVs that differed in size (S- and L-sEVs). In vitro fertilization was performed with in vitro matured oocytes and frozen-thawed spermatozoa and the IVF medium was supplemented during gamete coincubation (1 h at 38.5 °C, 5 % CO2 in a humidified atmosphere) with three different concentrations of each sEV subset: 0 (control, without sEVs), 0.1, and 0.2 mg/mL. The first experiment showed that sEVs, regardless of subset and concentration, decreased penetration rates and total IVF efficiency (P < 0.0001). In a subsequent experiment, it was shown that sEVs, regardless of subset and concentration, impaired the ability of spermatozoa to bind to the zona pellucida of oocytes (P < 0.0001). The following experiment showed that sEVs, regardless of the subset, bound to frozen-thawed sperm but not to in vitro matured oocytes, indicating that sEVs would affect sperm functionality but not oocyte functionality. The lack of effect on oocytes was confirmed by incubating sEVs with oocytes prior to IVF, achieving sperm-zona pellucida binding results similar to those of control. In the last experiment, conducted under IVF conditions, sperm functionality was analyzed in terms of tyrosine phosphorylation, acrosome integrity and metabolism. The sEVs, regardless of the subset, did not affect sperm tyrosine phosphorylation or acrosome integrity, but did influence sperm metabolism by decreasing sperm ATP production under capacitating conditions. In conclusion, this study demonstrated that the presence of sEVs on IVF medium impairs IVF outcomes, most likely by altering sperm metabolism.


Semen , Sperm-Ovum Interactions , Male , Swine , Animals , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Spermatozoa/metabolism , Oocytes , Zona Pellucida/metabolism , Albumins/metabolism , Tyrosine/metabolism
2.
J Anim Sci Biotechnol ; 15(1): 10, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38297401

BACKGROUND: Despite their low abundance in sperm, mitochondria have diverse functions in this cell type, including energy production, signalling and calcium regulation. In humans, sperm mitochondrial DNA content (mtDNAc) has been reported to be negatively linked to sperm function and fertility. Yet, the association between mtDNAc and sperm function in livestock remains unexplored. For this reason, this study aimed to shed some light on the link between mtDNAc and sperm function and fertilising potential in pigs. A qPCR method for mtDNAc quantification was optimised for pig sperm, and the association of this parameter with sperm motility, kinematics, mitochondrial activity, and fertility was subsequently interrogated. RESULTS: First, the qPCR method was found to be sensitive and efficient for mtDNAc quantification in pig sperm. By using this technique, mtDNAc was observed to be associated to sperm motility, mitochondrial activity and in vivo, but not in vitro, fertility outcomes. Specifically, sperm with low mtDNAc were seen to exhibit greater motility but decreased mitochondrial activity and intracellular reactive oxygen species. Interestingly, samples with lower mtDNAc showed higher conception and farrowing rates, but similar in vitro fertilisation rates and embryo development, when compared to those with greater mtDNAc. CONCLUSIONS: These findings enrich our comprehension of the association of mtDNAc with sperm biology, and lay the foundation for future research into employing this parameter as a molecular predictor for sperm function and fertility in livestock.

3.
Biol Res ; 57(1): 5, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38287386

BACKGROUND: Basal energetic metabolism in sperm, particularly oxidative phosphorylation, is known to condition not only their oocyte fertilising ability, but also the subsequent embryo development. While the molecular pathways underlying these events still need to be elucidated, reactive oxygen species (ROS) could have a relevant role. We, therefore, aimed to describe the mechanisms through which mitochondrial activity can influence the first stages of embryo development. RESULTS: We first show that embryo development is tightly influenced by both intracellular ROS and mitochondrial activity. In addition, we depict that the inhibition of mitochondrial activity dramatically decreases intracellular ROS levels. Finally, we also demonstrate that the inhibition of mitochondrial respiration positively influences sperm DNA integrity, most likely because of the depletion of intracellular ROS formation. CONCLUSION: Collectively, the data presented in this work reveals that impairment of early embryo development may result from the accumulation of sperm DNA damage caused by mitochondrial-derived ROS.


Mitochondria , Semen , Male , Humans , Reactive Oxygen Species/metabolism , Semen/metabolism , Spermatozoa/metabolism , Embryonic Development , Oxidative Stress
4.
Biol. Res ; 57: 5-5, 2024. ilus, graf
Article En | LILACS | ID: biblio-1550060

BACKGROUND: Basal energetic metabolism in sperm, particularly oxidative phosphorylation, is known to condition not only their oocyte fertilising ability, but also the subsequent embryo development. While the molecular pathways underlying these events still need to be elucidated, reactive oxygen species (ROS) could have a relevant role. We, therefore, aimed to describe the mechanisms through which mitochondrial activity can influence the first stages of embryo development. RESULTS: We first show that embryo development is tightly influenced by both intracellular ROS and mitochondrial activity. In addition, we depict that the inhibition of mitochondrial activity dramatically decreases intracellular ROS levels. Finally, we also demonstrate that the inhibition of mitochondrial respiration positively influences sperm DNA integrity, most likely because of the depletion of intracellular ROS formation. CONCLUSION: Collectively, the data presented in this work reveals that impairment of early embryo development may result from the accumulation of sperm DNA damage caused by mitochondrial-derived ROS.


Humans , Male , Semen/metabolism , Mitochondria , Spermatozoa/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Embryonic Development
5.
Res Vet Sci ; 165: 105046, 2023 Dec.
Article En | MEDLINE | ID: mdl-37883856

Previous research revealed that several seminal plasma (SP) metabolites are related to sperm functionality, fertility, and preservation. While it is understood that variations between species exist, whether the SP metabolome differs between donkeys and horses has not been previously investigated. The aim of this work, therefore, was to characterize and compare donkey and horse SP metabolites using nuclear magnetic resonance (NMR) spectroscopy, and relate them to sperm viability and motility. For this purpose, ejaculates from 18 different donkeys and 18 different horses were collected and separated into two aliquots: one for harvesting the SP by centrifugation and obtaining the metabolic profile through NMR, and the other for evaluating sperm viability and motility. Based on total motility and sperm viability, samples were classified as with good (GQ) or poor (PQ) quality. The metabolomic profile of donkey and horse SP revealed the presence of 28 metabolites, which coincided in the two species. Yet, differences between horses and donkeys were observed in the concentration of 18 of these 28 metabolites, as well as between ejaculates classified as GQ or PQ and in the relationship of metabolites with sperm motility and viability. These findings suggest that sperm from donkeys and horses differ in their metabolism and energetic requirements, and that the concentration of specific SP metabolites may be related to sperm functionality. Further research should shed light on the metabolic needs of donkey and horse sperm, and evaluate how the knowledge collected from the contribution of these metabolites can help improve semen preservation in the two species.


Semen Preservation , Semen , Horses , Male , Animals , Semen/chemistry , Equidae , Sperm Motility , Semen Analysis/veterinary , Spermatozoa , Semen Preservation/veterinary , Cryopreservation/veterinary
6.
Biol Res ; 56(1): 53, 2023 Oct 24.
Article En | MEDLINE | ID: mdl-37876007

BACKGROUND: In vitro incubation of epididymal and vas deferens sperm with Mn2+ induces Sperm Chromatin Fragmentation (SCF), a mechanism that causes double-stranded breaks in toroid-linker regions (TLRs). Whether this mechanism, thought to require the participation of topoisomerases and/or DNAses and thus far only described in epididymal mouse sperm, can be triggered in ejaculated sperm is yet to be elucidated. The current study aimed to determine if exposure of pig ejaculated sperm to divalent ions (Mn2+ and Mg2+) activates SCF, and whether this has any impact on sperm function and survival. For this purpose, sperm DNA integrity was evaluated through the Comet assay and Pulsed Field Gel Electrophoresis (PFGE); sperm motility and agglutination were assessed with computer assisted sperm analysis (CASA); and sperm viability and levels of total reactive oxygen species (ROS) and superoxides were determined through flow cytometry. RESULTS: Incubation with Mn2+/Ca2+ activated SCF in a dose-dependent (P < 0.05) albeit not time-dependent manner (P > 0.05); in contrast, Mg2+/Ca2+ only triggered SCF at high concentrations (50 mM). The PFGE revealed that, when activated by Mn2+/Ca2+ or Mg2+/Ca2+, SCF generated DNA fragments of 33-194 Kb, compatible with the size of one or multiple toroids. Besides, Mn2+/Ca2+ affected sperm motility in a dose-dependent manner (P < 0.05), whereas Mg2+/Ca2+ only impaired this variable at high concentrations (P < 0.05). While this effect on motility was concomitant with an increase of agglutination, neither viability nor ROS levels were affected by Mn2+/Ca2+ or Mg2+/Ca2+ treatments. CONCLUSION: Mn2+/Ca2+ and Mn2+/Ca2+ were observed to induce SCF in ejaculated sperm, resulting in DNA cleavage at TLRs. The activation of this mechanism by an intracellular, non-oxidative factor sheds light on the events taking place during sperm cell death.


Chromatin , Semen , Male , Mice , Animals , Swine , Chromatin/metabolism , Reactive Oxygen Species/metabolism , Semen/metabolism , Sperm Motility/physiology , Spermatozoa/metabolism , DNA/metabolism , DNA Fragmentation
7.
J Anim Sci Biotechnol ; 14(1): 129, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37730625

BACKGROUND: MicroRNAs (miRNAs) are small, single-stranded, non-coding RNA molecules of 22-24 nucleotides that regulate gene expression. In the last decade, miRNAs have been described in sperm of several mammals, including cattle. It is known that miRNAs can act as key gene regulators of early embryogenesis in mice and humans; however, little is known about the content, expression, and function of sperm-borne miRNAs in early bovine embryo. In this study, total sperm RNA was isolated from 29 cryopreserved sperm samples (each coming from a separate bull) using a RNeasy kit and treatment with DNase I. RNA concentration and purity were determined through an Epoch spectrophotometer and an Agilent Bioanalyzer. The expression of 10 candidate miRNAs in bovine sperm (bta-miR-10a, bta-miR-10b, bta-miR-138, bta-miR-146b, bta-miR-19b, bta-miR-26a, bta-miR-34a, bta-miR-449a, bta-miR-495 and bta-miR-7), previously identified in testis and/or epididymis, was evaluated with RT-qPCR. The cel-miR-39-3p was used as a spike-in exogenous control. Nonparametric Mann-Whitney tests were run to evaluate which miRNAs were differentially expressed between bulls with high fertility [HF; non-return rates (NRR) ranging from 39.5 to 43.5] and those with subfertility (SF; NRR ranging from 33.3 to 39.3). Several sperm functionality parameters (e.g., viability, membrane stability or oxygen consumption, among others) were measured by multiplexing flow cytometry and oxygen sensing technologies. RESULTS: RNA concentration and purity (260/280 nm ratio) (mean ± SD) from the 29 samples were 99.3 ± 84.6 ng/µL and 1.97 ± 0.72, respectively. Bioanalyzer results confirmed the lack of RNA from somatic cells. In terms of the presence or absence of miRNAs, and after applying the Livak method, 8 out of 10 miRNAs (bta-miR-10b, -138, -146b, -19b, -26a, -449a, -495, -7) were consistently detected in bovine sperm, whereas the other two (bta-miR-10a, and -34a) were absent. Interestingly, the relative expression of one miRNA (bta-miR-138) in sperm was significantly lower in the SF than in the HF group (P = 0.038). In addition to being associated to fertility potential, the presence of this miRNA was found to be negatively correlated with sperm oxygen consumption. The expression of three other miRNAs (bta-miR-19b, bta-miR-26a and bta-miR-7) was also correlated with sperm function variables. CONCLUSIONS: In conclusion, although functional validation studies are required to confirm these results, this study suggests that sperm bta-miR-138 is involved in fertilization events and beyond, and supports its use as a fertility biomarker in cattle.

8.
Commun Biol ; 6(1): 344, 2023 03 30.
Article En | MEDLINE | ID: mdl-36997604

Whether basal metabolic activity in sperm has any influence on their fertilising capacity has not been explored. Using the pig as a model, the present study investigated the relationship of energetic metabolism with sperm quality and function (assessed through computer-assisted sperm analysis and flow cytometry), and fertility (in vitro fertilisation (IVF) outcomes). In semen samples from 16 boars, levels of metabolites related to glycolysis, ketogenesis and Krebs cycle were determined through a targeted metabolomics approach using liquid chromatography-tandem mass spectrometry. High-quality sperm are associated to greater levels of glycolysis-derived metabolites, and oocyte fertilisation and embryo development are conditioned by the sperm metabolic status. Interestingly, glycolysis appears to be the preferred catabolic pathway of the sperm giving rise to greater percentages of embryos at day 6. In conclusion, this study shows that the basal metabolic activity of sperm influences their function, even beyond fertilisation.


Semen , Spermatozoa , Male , Animals , Swine , Spermatozoa/physiology , Fertilization in Vitro/methods , Fertility , Semen Analysis
9.
Sci Rep ; 12(1): 19096, 2022 11 09.
Article En | MEDLINE | ID: mdl-36351965

Seminal plasma (SP), a fluid composed mainly by secretions from accessory sex glands, contains a heterogenous population of extracellular vesicles (EVs), involved in several reproductive physiological processes. Seminal plasma has been found to modulate ovary function, in terms of hormone secretion and immune regulation. This study evaluated the potential effect of SP-EV-subsets on the modulation of cumulus-oocyte-complex (COCs) physiology during in vitro maturation (IVM). Two SP-EV-subsets, small-EVs (S-EVs) and large-EVs (L-EVs), were isolated from pig SP by size-exclusion-chromatography. Next, COCs were IVM in the absence (control) or presence of each SP-EV-subset to evaluate their uptake by COCs (PKH67-EVs labelling) and their effect on oocyte and cumulus cells (CCs) (gene expression, and progesterone and estradiol-17ß levels). S-EVs and L-EVs were able to bind CCs but not oocytes. Supplementation with L-EVs induced changes (P ≤ 0.05) in the transcript levels of oocyte maturation- (HAS2) and steroidogenesis-related genes (CYP11A1 and HSD3B1) in CCs. No effect on nuclear oocyte maturation and progesterone and estradiol-17ß levels was observed when COCs were IVM with any of the two SP-EV-subsets. In conclusion, while SP-EV-subsets can be integrated by CCs during IVM, they do not affect oocyte maturation and only L-EVs are able to modulate CCs function, mainly modifying the expression of steroidogenesis-related genes.


Cumulus Cells , Extracellular Vesicles , Female , Swine , Animals , Cumulus Cells/metabolism , Progesterone/metabolism , Estradiol/pharmacology , Gene Expression
10.
Res Vet Sci ; 153: 127-136, 2022 Dec 31.
Article En | MEDLINE | ID: mdl-36356420

Follicular fluid is formed from the transudation of theca and granulosa cells in the growing follicular antrum. Its main function is to provide an optimal intrafollicular microenvironment to modulate oocyte maturation. The aim of this study was to determine the metabolomic profile of preovulatory follicular fluid (PFF) in jennies. For this purpose, PFF was collected from 10 follicles of five jennies in heat. Then, PFF samples were analysed by nuclear magnetic resonance (NMR) and heteronuclear single quantum correlation (2D 1H/13C HSQC). Our study revealed the presence of at least 27 metabolites in the PFF of jennies (including common amino acids, carboxylic acids, amino acid derivatives, alcohols, saccharides, fatty acids, and lactams): 3-hydroxybutyrate, acetate, alanine, betaine, citrate, creatine, creatine phosphate, creatinine, ethanol, formate, glucose, glutamine, glycerol, glycine, hippurate, isoleucine, lactate, leucine, lysine, methanol, phenylalanine, proline, pyruvate, threonine, tyrosine, valine, and τ-methylhistidine. The metabolites found here have an important role in the oocyte development and maturation, since the PFF surrounds the follicle and provides it with the needed nutrients. Our results indicate a unique metabolic profile of the jennies PFF, as it differs from those previously observed in the PFF of the mare, a phylogenetically close species that is taken as a reference for establishing reproductive biotechnology techniques in donkeys. The metabolites found here also differ from those described in the TCM-199 medium enriched with fetal bovine serum (FBS), which is the most used medium for in vitro oocyte maturation in equids. These differences would suggest that the established conditions for in vitro maturation used so far may not be suitable for donkeys. By providing the metabolic composition of jenny PFF, this study could help understand the physiology of oocyte maturation as a first step to establish in vitro reproductive techniques in this species.

11.
J Anim Sci Biotechnol ; 13(1): 105, 2022 Sep 17.
Article En | MEDLINE | ID: mdl-36114517

BACKGROUND: The analysis of chromatin integrity has become an important determinant of sperm quality. In frozen-thawed bovine sperm, neither the sequence of post-thaw injury events nor the dynamics of different types of sperm DNA breaks are well understood. The aim of the present work was to describe such sperm degradation aftermath focusing on DNA damage dynamics, and to assess if this parameter can predict pregnancy rates in cattle. RESULTS: A total of 75 cryopreserved ejaculates from 25 Holstein bulls were evaluated at two post-thawing periods (0-2 h and 2-4 h), analyzing global and double-stranded DNA damage through alkaline and neutral Comet assays, chromatin deprotamination and decondensation, sperm motility, viability, acrosomal status, and intracellular levels of total ROS, superoxides and calcium. Insemination of 59,605 females was conducted using sperm from the same bulls, thus obtaining the non-return to estrus rates after 90 d (NRR). Results showed an increased rate of double-stranded breaks in the first period (0-2 h: 1.29 ± 1.01%/h vs. 2-4 h: 0.13 ± 1.37%/h; P <  0.01), whereas the rate of sperm with moderate + high single-stranded breaks was higher in the second period (0-2 h: 3.52 ± 7.77 %/h vs. 2-4h: 21.06 ± 11.69 %/h; P < 0.0001). Regarding sperm physiology, viability decrease rate was different between the two periods (0-2 h: - 4.49 ± 1.79%/h vs. 2-4 h: - 2.50 ± 3.39%/h; P = 0.032), but the progressive motility decrease rate was constant throughout post-thawing incubation (0-2 h: - 4.70 ± 3.42%/h vs. 2-4 h: - 1.89 ± 2.97%/h; P > 0.05). Finally, whereas no correlations between bull fertility and any dynamic parameter were found, there were correlations between the NRR and the basal percentage of highly-damaged sperm assessed with the alkaline Comet (Rs = - 0.563, P = 0.003), between NRR and basal progressive motility (Rs = 0.511, P = 0.009), and between NRR and sperm with high ROS at 4 h post-thaw (Rs = 0.564, P = 0.003). CONCLUSION: The statistically significant correlations found between intracellular ROS, sperm viability, sperm motility, DNA damage and chromatin deprotamination suggested a sequence of events all driven by oxidative stress, where viability and motility would be affected first and sperm chromatin would be altered at a later stage, thus suggesting that bovine sperm should be used for fertilization within 2 h post-thaw. Fertility correlations supported that the assessment of global DNA damage through the Comet assay may help predict bull fertility.

12.
Theriogenology ; 189: 290-300, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-35816887

Over the last decades, selection in cattle has mainly been based on milk production rather than on reproductive efficiency. While, when applied, focus on reproduction has involved females, attention has barely been paid to males and, if so, it has only looked at classical sperm quality parameters. In effect, variables such as telomere length have been missed, despite the fact that longer telomeres have been suggested to be linked to male fertility in humans. For this reason, the present study aimed to determine the length of telomeres in bovine sperm and their relationship with a) sperm quality evaluated through the conventional spermiogram and flow cytometry, and b) bull reproductive performance. For this purpose, 29 bulls were involved in this study. Sperm telomere length was evaluated through quantitative Fluorescent In Situ Hybridization (qFISH), and sperm quality was determined at 0 h and 4 h post-thaw. Bull fertility was assessed as non-return to estrus rates after 90 days of artificial insemination. Although the mean telomere length in bovine sperm was 12.06 ± 2.75 kb, the intra-individual variability in length led us to observe three different groups of telomeres in each sperm cell: short telomeres (7.14% ± 5.79% of telomeres; 8.29 ± 2.34 kb), medium telomeres (31.03% ± 12.92% of telomeres; 16.00 ± 2.72 kb) and long telomeres (61.93% ± 18.11% of telomeres; 30.13 ± 11.35 kb). Moreover, whereas reactive oxygen species (ROS) were found to be correlated to sperm telomere length (Rs = -0.492; P= 0.007), no correlation with other sperm quality parameters was found (P > 0.05). Reproductive performance after artificial insemination was not seen to be correlated to sperm telomere length (Rs = 0.123; P= 0.520). In conclusion, this study determined, for the first time, the mean telomere length in bovine sperm and also reported that there is a high variability within each sperm cell. Yet, while telomere length was found to be correlated to ROS generation, it was not related to bull reproductive performance.


Semen , Spermatozoa , Animals , Cattle , Female , Humans , In Situ Hybridization, Fluorescence/veterinary , Insemination, Artificial/veterinary , Male , Reactive Oxygen Species , Telomere
13.
Reprod Fertil Dev ; 34(9): 679-688, 2022 May.
Article En | MEDLINE | ID: mdl-35361313

CONTEXT: While conventional semen analysis is a simple, time-saving, and economical means to evaluate sperm quality, it leaves biochemical and metabolic characteristics of spermatozoa aside. To address this issue, the use of fluorescent probes assessing functional sperm parameters, such as JC-1, DiOC6 (3) and MitoTracker, has increased over the last decades. Apparently contradictory observations have nevertheless fostered an ongoing debate on their sensitivity and ability to evaluate the mitochondrial membrane potential (MMP) of sperm cells, thus warranting a re-examination of these probes. AIMS: The present study aims to elucidate the suitability and sensitivity of each probe to evaluate the MMP of bovine spermatozoa by flow cytometry. METHODS: Cryopreserved spermatozoa from ten bulls were thawed, stained with JC-1/SYTOXRed, DiOC6 (3)/propidium iodide (PI) or MitoTracker Deep Red (MTDR)/PI, and evaluated with flow cytometry and fluorescence microscopy. KEY RESULTS: DiOC6 (3), JC-1 and MTDR can be simultaneously co-stained with a viability marker. The results of the present study support the ability of DiOC6 (3)/PI and JC-1/SYTOXRed, but not that of MTDR/PI, to monitor the MMP of spermatozoa. CONCLUSIONS: JC-1/SYTOXRed assessed by flow cytometry was found to be the most sensitive and robust fluorescent probe to assess MMP. Moreover, DiOC6 (3)/PI could be a suitable alternative when the flow cytometer is not equipped with a red laser and/or an adequate optical filter. IMPLICATIONS: Both DiOC6 (3) and JC-1, but not MTDR, could be used as probes to assess the mitochondrial membrane potential of bovine spermatozoa.


Fluorescent Dyes , Spermatozoa , Animals , Cattle , Male , Flow Cytometry/veterinary , Microscopy, Fluorescence/veterinary , Propidium , Sperm Motility
14.
Biol Res ; 55(1): 15, 2022 Apr 01.
Article En | MEDLINE | ID: mdl-35365220

BACKGROUND: The assessment of sperm DNA integrity has been proposed as a complementary test to conventional mammalian semen analysis. In this sense, single-strand (SSB) and double-strand (DSB) DNA breaks, the two types of sperm DNA fragmentation (SDF), have been reported to have different aetiologies and to be associated to different fertility outcomes in bovine and humans. Considering that no studies in porcine have addressed how SDF may affect sperm quality and fertility outcomes, the present work aimed to determine the impact of global DNA damage, SSB and DSB on sperm quality and in vitro fertilising ability. To this end, 24 ejaculates (one per boar) were split into three aliquots: the first was used to assess sperm quality parameters through a computer-assisted sperm analysis (CASA) system and flow cytometry; the second was used to perform in vitro fertilisation, and the third, to evaluate sperm DNA integrity using alkaline and neutral Comet assays. RESULTS: The results showed that global DNA damage negatively correlates (P < 0.05) with normal sperm morphology (R = - 0.460) and progressive motility (R = - 0.419), and positively with the percentage of non-viable sperm (R = 0.507). Multiple regression analyses showed that non-viable sperm were related to SSB (ß = - 0.754). In addition, while fertilisation did not seem to be affected by sperm DNA integrity, global DNA damage, DSB and SSB were found to be correlated to embryo development outcomes. Specifically, whereas global DNA damage and DSB negatively affected (P < 0.05) the later preimplantation embryo stages (percentage of early blastocyst/blastocyst D6: for global DNA damage, R = - 0.458, and for DSB, R = - 0.551; and percentage of hatching/hatched blastocyst D6: for global DNA damage, R = - 0.505, and for DSB, R = - 0.447), global DNA damage and SSB had a negative impact (P < 0.05) on the developmental competency of fertilised embryos (R = - 0.532 and R = - 0.515, respectively). Remarkably, multiple regression analyses supported the associations found in correlation analyses. Finally, the present work also found that the inclusion of Comet assays to the conventional sperm quality tests improves the prediction of blastocyst formation (AUC = 0.9021, P < 0.05), but not fertilisation rates (P > 0.05). CONCLUSION: Considering all these findings, this work sets a useful model to study how SDF negatively influences fertility.


DNA Damage , Spermatozoa , Animals , Cattle , DNA Fragmentation , Embryonic Development , Fertilization , Male , Mammals , Swine
15.
Front Endocrinol (Lausanne) ; 13: 773249, 2022.
Article En | MEDLINE | ID: mdl-35173684

Aldose reductase B1 (AKR1B1) has been reported to participate in the modulation of male and female reproductive physiology in several mammalian species. In spite of this, whether or not AKR1B1 could be related to sperm quality, functionality and fertilizing ability is yet to be elucidated. The present study, therefore, aimed to investigate: i) the presence of AKR1B1 in epididymal and ejaculated sperm; ii) the relationship between the AKR1B1 present in sperm and the physiology of the male gamete; iii) the liaison between the relative content of AKR1B1 in sperm and their ability to withstand preservation for 72 h; and iv) the potential link between sperm AKR1B1 and in vitro fertility outcomes. Immunoblotting revealed that AKR1B1 is present in both epididymal and ejaculated sperm with a similar relative content. Moreover, the relative levels of AKR1B1 in sperm (36 kDa band) were found to be negatively related to several kinematic parameters and intracellular calcium levels, and positively to the percentage of sperm with distal cytoplasmic droplets after storage. Finally, AKR1B1 amounts in sperm (36 kDa band) were negatively associated to fertilization rate at two days post-fertilization and embryo development at six days post-fertilization. The results of the present work suggest that AKR1B1 in sperm is probably acquired during maturation rather than at ejaculation and could play a role in that process. Moreover, AKR1B1 seems to be related to the sperm resilience to preservation and to their fertilizing capacity, as lower levels of the 36 kDa band (putative inactive form of this protein) result in better reproductive outcomes.


Aldehyde Reductase , Fertilization in Vitro , Aldehyde Reductase/metabolism , Animals , Epididymis/physiology , Female , Fertilization , Fertilization in Vitro/methods , Male , Mammals , Spermatozoa/physiology , Swine
16.
Animals (Basel) ; 12(2)2022 Jan 15.
Article En | MEDLINE | ID: mdl-35049825

Telomere length has attracted much interest as a topic of study in human reproduction; furthermore, the link between sperm telomere length and fertility outcomes has been investigated in other species. This biomarker, however, has not been much explored in other animals, such as pigs, and whether it is related to sperm quality and fertility outcomes remains unknown. The present work aimed to determine the absolute value of telomere length in pig sperm, as well as its relationship to sperm quality parameters and embryo development. Telomere length was determined through quantitative fluorescence in situ hybridization (qFISH) in 23 pig sperm samples and data were correlated to quality parameters (motility, morphology, and viability) and in vitro fertilization outcomes. We found that the mean telomere length in pig sperm was 22.1 ± 3.6 kb, which is longer than that previously described in humans. Whilst telomere length was not observed to be correlated to sperm quality variables (p > 0.05), a significant correlation between telomere length and the percentage of morulae 6 days after in vitro fertilization was observed (rs = 0.559; 95% C.I. = (-0.007 to 0.854); p = 0.047). Interestingly, this correlation was not found when percentages of early blastocysts/blastocysts (rs = 0.410; 95% C.I. = (-0.200 to 0.791); p = 0.164) and of hatching/hatched blastocysts (rs = 0.356; 95% C.I. = (- 0.260 to 0.766); p = 0.233) were considered. Through the separation of the samples into two groups by the median value, statistically significant differences between samples with shorter telomeres than the median and samples with longer telomeres than the median were found regarding development to morula (11.5 ± 3.6 vs. 21.8 ± 6.9, respectively) and to early blastocyst/blastocysts (7.6 ± 1.4 vs. 17.9 ± 12.2, respectively) (p < 0.05). In the light of these results, sperm telomere length may be a useful biomarker for embryo development in pigs, as sperm with longer telomeres lead to higher rates of morulae and blastocysts.

17.
Equine Vet J ; 54(2): 415-426, 2022 Mar.
Article En | MEDLINE | ID: mdl-33908643

BACKGROUND: In several mammalian species, acute endometritis driven by the recruitment of polymorphonuclear cells (PMN) occurs in response to semen. These PMNs release DNA to form neutrophil extracellular traps (NETs) in cattle, horse and human, leading to sperm entrapment. While there is no evidence of this phenomenon occurring in donkeys, artificial insemination (AI) with frozen-thawed semen, which results in very poor pregnancy rates, leads to a large PMN recruitment to the uterus. OBJECTIVES: To investigate whether donkey semen can trigger NET release (NETosis) and if excessive NETosis occurs in response to frozen-thawed semen. STUDY DESIGN: In vitro experiments. METHODS: Jenny PMNs were exposed to jackass fresh or frozen-thawed semen, isolated sperm or seminal plasma (SP), over the course of three experiments. NET formation in response to different treatments was assessed through manual quantification of stained slides. A one-way analysis of variance (ANOVA), followed by a post hoc Sidak test, was carried out to determine statistical significance. RESULTS: NET release occurred in a semen concentration- and incubation-time-dependent manner. Surprisingly, frozen-thawed donkey sperm did not increase NETosis rate in comparison with the control (23 ± 2.5% vs. 31 ± 3.7%; P > .05), whereas fresh semen exposure did (78 ± 5.7% vs. 26 ± 3.2%, P < .01). NETosis increased in the presence of SP, regardless of the presence or absence of sperm, in comparison with the control in both fresh (84 ± 5.2% and 77 ± 5.0% vs. 12 ± 2.7%, respectively; P < .01) and frozen (95 ± 2.2% and 94 ± 2.9% vs. 14 ± 3.8%, respectively; P < .01) samples. Moreover, exposure of PMN to viable and motile sperm, in the absence of SP, did not increase NETosis rates (P > .05). CONCLUSIONS: Donkey SP, and not sperm-intrinsic factors, is able to trigger NETosis in both time- and semen concentration-dependent manner. The physiological relevance of such response against semen in the donkey remains to be elucidated.


Extracellular Traps , Semen Preservation , Animals , Cryopreservation/veterinary , Equidae , Female , Insemination, Artificial/veterinary , Male , Pregnancy , Semen , Semen Preservation/veterinary , Spermatozoa
18.
Biol. Res ; 55: 15-15, 2022. ilus, tab
Article En | LILACS | ID: biblio-1383917

BACKGROUND: The assessment of sperm DNA integrity has been proposed as a complementary test to conventional mammalian semen analysis. In this sense, single-strand (SSB) and double-strand (DSB) DNA breaks, the two types of sperm DNA fragmentation (SDF), have been reported to have different aetiologies and to be associated to different fertility outcomes in bovine and humans. Considering that no studies in porcine have addressed how SDF may affect sperm quality and fertility outcomes, the present work aimed to determine the impact of global DNA damage, SSB and DSB on sperm quality and in vitro fertilising ability. To this end, 24 ejaculates (one per boar) were split into three aliquots: the first was used to assess sperm quality parameters through a computer-assisted sperm analysis (CASA) system and flow cytometry; the second was used to perform in vitro fertilisation, and the third, to evaluate sperm DNA integrity using alkaline and neutral Comet assays. RESULTS: The results showed that global DNA damage negatively correlates (P 0.05). CONCLUSION: Considering all these findings, this work sets a useful model to study how SDF negatively influences fertility.


Animals , Male , Cattle , Spermatozoa , DNA Damage , Swine , Embryonic Development , DNA Fragmentation , Fertilization , Mammals
19.
J Anim Sci Biotechnol ; 12(1): 113, 2021 Nov 12.
Article En | MEDLINE | ID: mdl-34772452

BACKGROUND: Metabolomic approaches, which include the study of low molecular weight molecules, are an emerging -omics technology useful for identification of biomarkers. In this field, nuclear magnetic resonance (NMR) spectroscopy has already been used to uncover (in) fertility biomarkers in the seminal plasma (SP) of several mammalian species. However, NMR studies profiling the porcine SP metabolome to uncover in vivo fertility biomarkers are yet to be carried out. Thus, this study aimed to evaluate the putative relationship between SP-metabolites and in vivo fertility outcomes. To this end, 24 entire ejaculates (three ejaculates per boar) were collected from artificial insemination (AI)-boars throughout a year (one ejaculate every 4 months). Immediately after collection, ejaculates were centrifuged to obtain SP-samples, which were stored for subsequent metabolomic analysis by NMR spectroscopy. Fertility outcomes from 1525 inseminations were recorded over a year, including farrowing rate, litter size, stillbirths per litter and the duration of pregnancy. RESULTS: A total of 24 metabolites were identified and quantified in all SP-samples. Receiver operating characteristic (ROC) curve analysis showed that lactate levels in SP had discriminative capacity for farrowing rate (area under the curve [AUC] = 0.764) while carnitine (AUC = 0.847), hypotaurine (AUC = 0.819), sn-glycero-3-phosphocholine (AUC = 0.833), glutamate (AUC = 0.799) and glucose (AUC = 0.750) showed it for litter size. Similarly, citrate (AUC = 0.743), creatine (AUC = 0.812), phenylalanine (AUC = 0.750), tyrosine (AUC = 0.753) and malonate (AUC = 0.868) levels had discriminative capacity for stillbirths per litter; and malonate (AUC = 0.767) and fumarate (AUC = 0.868) levels for gestation length. CONCLUSIONS: The assessment of selected SP-metabolites in ejaculates through NMR spectroscopy could be considered as a promising non-invasive tool to predict in vivo fertility outcomes in pigs. Moreover, supplementing AI-doses with specific metabolites should also be envisaged as a way to improve their fertility potential.

20.
Front Vet Sci ; 8: 719319, 2021.
Article En | MEDLINE | ID: mdl-34746276

Although sperm chromatin damage, understood as damage to DNA or affectations in sperm protamination, has been proposed as a biomarker for sperm quality in both humans and livestock, the low incidence found in some animals raises concerns about its potential value. In this context, as separate methods measure different facets of chromatin damage, their comparison is of vital importance. This work aims at analyzing eight techniques assessing chromatin damage in pig sperm. With this purpose, cryopreserved sperm samples from 16 boars were evaluated through the following assays: TUNEL, TUNEL with decondensation, SCSA, alkaline and neutral sperm chromatin dispersion (SCD) tests, alkaline and neutral Comet assays, and chromomycin A3 test (CMA3). In all cases, the extent of chromatin damage and the percentage of sperm with fragmented DNA were determined. The degree of chromatin damage and the percentage of sperm with fragmented DNA were significantly correlated (p < 0.05) in direct methods (TUNEL, TUNEL with decondensation, and alkaline and neutral Comet) and CMA3, but not in the indirect ones (SCD and SCSA). Percentages of sperm with fragmented DNA determined by alkaline Comet were significantly (p < 0.05) correlated with TUNEL following decondensation and CMA3; those determined by neutral Comet were correlated with the percentage of High DNA Stainability (SCSA); those determined by SCSA were correlated with neutral and alkaline SCD; and those determined by neutral SCD were correlated with alkaline SCD. While, in pigs, percentages of sperm with fragmented DNA are directly related to the extent of chromatin damage when direct methods are used, this is not the case for indirect techniques. Thus, the results obtained herein differ from those reported for humans in which TUNEL, SCSA, alkaline SCD, and alkaline Comet were found to be correlated. These findings may shed some light on the interpretation of these tests and provide some clues for the standardization of chromatin damage methods.

...